Trong machine learning tồn tại định lý “không có bữa trưa miễn phí” (No free lunch theorem), tức là không tồn tại một thuật toán mà luôn tốt cho mọi ứng dụng và mọi tập dữ liệu, vì các thuật toán machiner learning thường dựa trên một tập các tham số (hyperparameters) hoặc một giả thiết nhất định nào đó về phân bố dữ liệu.